经典算法通常对于解决非障碍最小值的非凸优化问题通常无效。在本文中,我们通过利用量子隧道的全局效应来探讨非凸优化的量子加速。具体而言,我们引入了一种称为量子隧道步行(QTW)的量子算法,并将其应用于局部最小值大约全局最小值的非凸问题。我们表明,当不同局部最小值较高但薄且最小值平坦时,QTW在经典随机梯度下降(SGD)上实现了量子加速。基于此观察结果,我们构建了一个特定的双孔景观,其中经典算法无法有效地击中一个目标,但是QTW可以在已知井附近提供适当的初始状态时可以很好地击中一个目标。最后,我们通过数值实验证实了我们的发现。
translated by 谷歌翻译
我们启动量子算法的研究,以优化近似凸功能。给定一个凸集$ {\ cal k} \ subseteq \ mathbb {r}^{n} $和一个函数$ f \ colon \ colon \ mathbb {r}^{n}^{n} \ to \ mathbb {r} $一个convex函数$ f \ colon \ mathcal {k} \ to \ mathbb {r} $满足$ \ sup_ {x \ in {\ cal k}}} | f(x)-f(x)-f(x)| \ leq \ epsilon/ epsilon/ n $,我们的量子算法在{\ cal k} $ in {\ cal k} $中找到$ x^{*} \,以便$ f(x^{*}) - \ min_ {x \ in {\ cal k}} f(x) \ leq \ epsilon $使用$ \ tilde {o}(n^{3})$量子评估查询到$ f $。与最著名的经典算法相比,这实现了多项式量子加速。作为一个应用程序,我们给出了$ \ tilde {o}(n^{5} \ log^{2} t)$ t $的量子算法,用于$ \ tilde {o}(n^{5} \ log^{2} t)$ hearry,与$ t $相比的指数加速经典$ \ omega(\ sqrt {t})$下限。从技术上讲,我们通过利用模拟退火的量子框架并采用了命中式步行的量子版本来实现$ n $的量子加速。我们在$ t $中的加速零订单随机凸Bistits是由于平均估计的乘法误差中的二次量子加速。
translated by 谷歌翻译
逃生马鞍点是非渗透优化中的中央研究主题。在本文中,我们提出了一种简单的基于梯度的算法,使得对于平滑函数$ f \ colon \ mathbb {r} ^ n \ to \ mathbb {r} $,它输出$ \ epsilon $-uppatione二阶$ \ tilde {o}(\ log n / \ epsilon ^ {1.75})$迭代。与先前的jin等人的最先进的算法相比。使用$ \ tilde {o}((\ log n)^ {4} / \ epsilon ^ {2})$或$ \ tilde {o}((\ log n)^ {6} / \ epsilon ^ {1.75} )$迭代,我们的算法在$ \ log n $方面多项式更好,并在$ 1 / \ epsilon $方面与他们的复杂性匹配。对于随机设置,我们的算法输出$ \ epsilon $ - $ \ tilde {o}((\ log n)^ {2} / \ epsilon ^ {4})$迭代。从技术上讲,我们的主要贡献是仅使用仅使用梯度实施强大的Hessian电源方法,该方法可以在马鞍点附近找到负曲率,并在$ \ log n $中实现多项式加速度与扰动的梯度下降方法相比。最后,我们还执行支持我们的结果的数值实验。
translated by 谷歌翻译
我们提出了一个算法框架,用于近距离矩阵上的量子启发的经典算法,概括了Tang的突破性量子启发算法开始的一系列结果,用于推荐系统[STOC'19]。由量子线性代数算法和gily \'en,su,low和wiebe [stoc'19]的量子奇异值转换(SVT)框架[SVT)的动机[STOC'19],我们开发了SVT的经典算法合适的量子启发的采样假设。我们的结果提供了令人信服的证据,表明在相应的QRAM数据结构输入模型中,量子SVT不会产生指数量子加速。由于量子SVT框架基本上概括了量子线性代数的所有已知技术,因此我们的结果与先前工作的采样引理相结合,足以概括所有有关取消量子机器学习算法的最新结果。特别是,我们的经典SVT框架恢复并经常改善推荐系统,主成分分析,监督聚类,支持向量机器,低秩回归和半决赛程序解决方案的取消结果。我们还为汉密尔顿低级模拟和判别分析提供了其他取消化结果。我们的改进来自识别量子启发的输入模型的关键功能,该模型是所有先前量子启发的结果的核心:$ \ ell^2 $ -Norm采样可以及时近似于其尺寸近似矩阵产品。我们将所有主要结果减少到这一事实,使我们的简洁,独立和直观。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译